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Discretionary service facilities are providers of products and/or services that are purchased by customers who are traveling on 
otherwise preplanned trips such as the daily commute. Optimum location of such facilities requires them to be at or near points 
in the transportation network having sizable flows of different potential customers. N. Fouska (1988) and 0. Berman, R. Larson 
and N. Fouska (BLF 1992) formulate a first version of this problem, assuming that customers would make no deviations, no 
matter how small, from the preplanned route to visit a discretionary service facility. Here the model is generalized in a number of 
directions, all sharing the property that the customer may deviate from the preplanned route to visit a discretionary service 
facility. Three different generalizations are offered, two of which can be solved approximately by greedy heuristics and the third 
by any approximate or exact method used to solve the p-median problem. We show for those formulations yielding to a greedy 
heuristic approximate solution, including the formulation in BLF, that the problems are examples of optimizing submodular 
functions for which the G. Nemhauser, L. Wolsey and M. Fisher (1978) bound on the performance of a greedy algorithm holds. 
In particular, the greedy solution is always within 37% of optimal, and for one of the formulations we prove that the bound is 
tight. 

Fouska (1988) and Berman, Larson and Fouska (BLF 
1992) considered a problem formulation in location 

theory which was called "optimal location of discretion- 
ary service facilities." Independently, and at approxi- 
mately the same time, Hodgson (1990) formulated the 
same problem and called it a "flow-capturing model." 
The motivation for this class of problems is a perceived 
behavioral change on the part of customers. Instead of 
undertaking a one-stop tour from home or workplace to a 
facility to purchase a service or product, it was argued 
that many customers now carry out such purchases as 
part of routine preplanned trips, say on the daily com- 
mute to and from home and workplace. Examples in- 
clude stopping at gasoline service stations, automatic 
teller machines, and "convenience stores." Traditional 
"Hakimi type" location models focus on minimizing 
some measure of travel distance or travel time from 
home (or workplace) to the facility. The optimal location 
of discretionary service facilities, on the other hand, re- 
quires convenience with regard to the customer's pre- 
planned trip. 

The focus in BLF was on locating the mr-discretionary 
service facilities to maximize the flow of potential cus- 
tomers who passed at least one discretionary service 

facility along their preselected travel paths from origin to 
destination. A path containing a facility was "covered;" 
a path not containing a facility, even if there existed a 
facility 8 travel units from the path (8 > 0), was not 
covered. BLF proved that an optimal set of facility loca- 
tions exists on the nodes of the network, and both exact 
and heuristic algorithms were developed to solve the 
problem. 

In this paper, we relax the assumption that, to be use- 
ful to a potential customer, a facility must be located at 
some point precisely on her preplanned travel path. Fa- 
cilities located "near" the preplanned path may also be 
utilized by the customer. 

In the first generalization, which we call delta 
coverage or problem P1, we assume that, as in BLF, 
the customer passes through each node of her pre- 
planned trip path. If there are no facilities on the 
path, she is willing to detour a maximum distance A from 
any one of the path nodes to travel to a discretionary 
service facility. After purchasing the service or product 
at the facility, she returns to the same path node, 
implying that a total detour travel distance of up to 2A 
is incurred. This model depicts a situation in which a 
detour of up to 2A travel units, starting and ending at 
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one of the preplanned path nodes, is associated with a 
zero disutility on the part of the customer. Any detour 
requiring more than 2A travel units has, in effect, infinite 
disutility, so the detour will not be executed and the 
associated service (product) will not be purchased. We 
show that this problem can be reduced to the problem 
solved in BLF. 

In the second generalization, which we call maximize 
market size or P2, we assume that customers are increas- 
ingly likely to balk at traveling to a service facility as the 
deviation distance to it increases. More precisely, we 
assume that the probability that a customer is willing to 
travel an extra d units of distance to a facility that is 
located off the preplanned path, assuming that this facil- 
ity is the least inconvenient to the original path, is a 
convex decreasing function of d. The objective is to lo- 
cate the m facilities to maximize the expected number of 
potential customers who become actual customers at the 
facilities. We develop both exact and approximate algo- 
rithms to solve this problem. 

Problems P1 and P2 can be considered within one uni- 
fied context, namely that of minimizing total customer 
disutility. Consider the disutility of the customers as a 
function of the (extra) distance d they must travel for 
service. Denote this disutility function by U(d). One can 
interpret U(d) as the probability of customer balking (not 
being willing to travel an extra d units of distance to a 
facility). In P1 the disutility function is a step function 
(U(d) = 0 for d < A, U(d) = 1 for d > A). In P2, U(d) 
is a concave increasing function of d. 

In the third generalization, which we call minimize ex- 
pected inconvenience or P3, we assume that all potential 
customers traveling on the network must purchase the 
service at a service facility, regardless of the extra dis- 
tance that must be traveled to get to the facility. In this 
sense the facilities are no longer discretionary. For some 
(lucky) customers, there will be a facility on their pre- 
planned travel paths, and no inconvenience is incurred. 
For others, the customers must deviate from the pre- 
planned trip to travel to the service facility causing the 
least digression from the originally selected path. We 
assume that customers select their deviation paths to be 
the shortest ones possible. The objective of this problem 
is to locate the service facilities to minimize the total 
deviation distance traveled per unit of time, or equiva- 
lently, to minimize the expected deviation distance trav- 
eled by a random customer. Hodgson (1981) was the first 
to identify and study this problem. He showed that this 
problem is essentially an m median problem, and any m 
median algorithm can be used to locate the m facilities. 
(The literature usually refers to the multifacility median 
problem as the p median problem, but p has another 
meaning herein; m is the number of facilities we 
consider.) 

We present a generic worst-case analysis of all the 
(greedy) heuristics developed both in this paper and in 
BLF. We show that each of our models, with the 

exception of the median model (P3), belongs to a family 
of problems in which there is a e-1 worst-case bound 
associated with the greedy heuristic and the bound is 
tight. This result improves upon the worst-case bound 
published in BLF for the original form of the discretion- 
ary services location problem. 

The paper includes specific algorithms, a greedy heu- 
ristic, and a branch-and-bound algorithm to solve prob- 
lem P2, numerical results, and a section on conclusions 
and future research. 

1. BACKGROUND AND NOTATION 

Let G(N, A) be a bidirectional urban transportation 
network, where N is the set of nodes with cardinality n 
and A is the set of arcs. We denote by P the set of 
non-zero flow paths through the network nodes and let 
fp indicate the number of units of travel flow along any 
path p E P, per unit of time. The flow quantity fp is not 
a decision variable, but rather is the known apriori num- 
ber of units of flow along pathp. Let m be the number of 
facilities to be located on the network. All facilities are 
assumed to provide identical service and thus no cus- 
tomer needs to stop at more than one of them on any 
given trip. 

1.1. The Case of No Allowed Deviation 

BLF examined the problem P-BLF of finding a set of m 
facilities on the network to maximize the total flow of 
different customers intercepted by the facilities under a 
specific assumption regarding the behavior of customers. 
It was assumed that a customer may receive service only 
from facilities located on his (her) preplanned trip path. 
In other words, customers cannot deviate from their pre- 
planned paths. The problem can be formulated as 
follows. 

Problem P-BLF 

Max > fpI(X, p), 
xE:G peP 

where I(x, p) is an indicator variable, 

I(X, p) = 1 at least one x Ex is on path p 
~ ~ - tOotherwise 

and k is a vector of m points in G. BLF show that G can 
be replaced with N in P-BLF because it is proved that an 
optimal set of locations exists in N. 

1.2. Deviation Distances 

In this paper, we relax the assumption that customers do 
not deviate from their preplanned trips when service is 
required. We define the deviation distance as the extra 
distance incurred when a customer deviates from her 
preplanned trip path. We denote by d(a, b) the shortest 
distance (travel time) between a and b, a, b E G. 
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In each analysis that follows, we allow one or more of 
three alternative deviation travel behaviors by the cus- 
tomer. The specific behavior allowed will be indicated in 
each respective section of the paper. 

Consider an arbitrary customer who, without any 
travel deviation to a service facility, would travel on a 
preplanned path p E P, defined by a node visitation 
sequencep = {1, 2, ... , 1} (where 1 is the pathp origin 
node and 1 is the destination node). To compute devia- 
tion distances we distinguish among three cases. 

Case i. (p E P is a shortest path and shortest path 
deviations are allowed.) The customer travels from 
point a to point b. If she chooses not to visit a service 
facility, she will travel on the s.p. (shortest path) from a 
to b. If she chooses to visit a facility at point x, she will 
take the s.p. from a to x, and the s.p. from x to b. The 
decision whether she visits a facility or not will depend 
on the minimum deviation. Thus, when p is a shortest 
path, setting the path p origin a = 1 and destination 
b = 1, the deviation distance from the path p to the 
nearest of the in facilities, D(p, x), is given by 

D(p, xc) _ [min D(p, x) min{d(l, x) + d(x, E) 

- d(1, l)}]. 

Case ii. (p E P may or may not be a shortest path and 
all nodes in p must be visited in proper sequence.) The 
customer will travel from a to b on a preplanned path. 
Even if she chooses to visit a facility, she must traverse 
the nodes on her preplanned path in the proper se- 
quence; this could arise, for instance, because of ordered 
deliveries and/or pickups that must be made at the nodes 
visited. Setting the path p origin a = 1 and destination 
b = 1, the deviation distance D(p, xc) is now given by 

D(p, x) min [min{d(j, x) + d(x, j + 1) 

- l(j, j + 1)}], 

where 1(j, j + 1) is the length of link (j, j + 1). 

Case iii. (p E P may or may not be a shortest path, all 
nodes in p must be visited in proper sequence, and only a 
simple one-tour deviation is allowed.) The customer will 
travel from a to b on a preplanned path. Even if she 
chooses to visit a facility, she must traverse the nodes on 
her preplanned path in the proper sequence. In addition, 
any deviation to visit a facility must start and end at the 
same node on the preplanned path. This could arise, for 
instance, because of ordered deliveries and/or pickups 
that must be made along the arcs visited in p (as in the 
postal delivery or refuse collection). The deviation dis- 
tance D(p, x?) is given by 

D(p, xT) min[min{2d(j, x)]. 
]EP xag 

As an example for the calculations of D(p, x-) we refer 
to Figure 1 that depicts a simple network with seven 
nodes. Suppose that for case i, p = (2, 1, 4, 5) and a 
single facility is located at node 3, then 

3~~~~~~~~ 

2 l2 

3 v 

Figure 1. A 7-node network. 

D(p, xc) = 2 + 9 - 9 = 2. 

For case ii, let us assume that p = (1, 2, 3, 6) and x = 7; 
then D(p, x) = min{6 + 5 - 3, 5 + 3 - 2, 3 + 5 - 3} = 5. 
For case iii with the same path and facility as with case 
ii, 

D(p, x) = (2)min{(6), (5), (3), (5)} = 6. 

2. THE PROBLEMS 

2.1. P1: Delta Coverage 

Delta coverage depicts a situation in which a round-trip 
detour of up to 2A travel units, starting and ending at the 
same preplanned path node, is allowed for the customer 
to visit a facility "nearest" to her preplanned route. It is 
assumed that the detour route is restricted to a tour com- 
prising a minimum distance path from the detour- 
originating path node to a nearest facility and, due to 
network bidirectionality, a repeat of that path in reverse 
direction. Thus, we are assuming that the travel devia- 
tion behavior follows case iii. 

The formulation of problem P-BLF is easy to extend to 
include problem P1. In P1 a customer is said to be inter- 
cepted by a facility if at least one facility is at a distance 
of, at most,, A from a node on the customer's trip pathp, 
that is: 

Problem P1 

Max E fpI>(x, p)9 
xE:G pEep 

where we define 

I'(X, p) =1 3 j Ep such that d(j, x) 
< 

A 
10 otherwise, 

where d(j, x) _ the shortest distance between j E N 
and a nearest facility located at x E x. 

Let us define N' as the union of the node set N and the 
set of all points Go in G that are exactly A units of 
distance away from a node, i.e., ,N = N U GQ, where 
G, = {y E G-d(j, y) = A, E N}. (Note that P1 
reduces to problem BLF when z^ = 0.) 
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Theorem 1. An optimal set of locations for problem P1 
exists in N'. 
Proof. The proof is straightforward and is omitted. 

The algorithms of BLF, both exact and heuristic, can 
be applied directly to solve problem P1, with the set of 
possible facility locations now extended to N'. 

2.2. P2: Maximize Market Size 
The objective of problem P2 is to locate the m facilities to 
maximize the expected number of potential customers 
who become actual customers at the facilities. Here we 
allow customers to deviate from their preplanned route 
in any of the three manners described in subsection 1.2; in 
particular, detours are not restricted to be tours. We as- 
sume that as the deviation distance grows larger, custom- 
ers become less and less likely to select the detour to visit 
a nearest facility. Thus, we again have a flow intercept 
maximization problem. 

We assume that the flow of path-p customers to the 
"nearest" of m facilities in the location set x is a convex 
decreasing function of the deviation distance D(p, 4 
denoted by fpg(D (p, .*)), where g(O) _ 1. Here g(D (p, 
x)) can be interpreted to be the fraction of path-s cus- 
tomers who would deviate to use a facility in x; closest 
to path p, or equivalently, the probability that a random 
path-s customer will deviate to use that facility. There- 
fore, problem P2 is as follows. 
Problem P2 

Max I fpg(D(p, *)). 
xkEG peP 

Theorem 2. An optimal set of locations to P2 exists in N. 

Proof. Case i (all customer paths are minimum distance 
paths): 

Path/facility assignment fixed: For any x E x, let P, be 
the set of all paths in P that route all or a fraction of its 
customers to the facility at x. If x lies on path p E P, 
there is no deviation distance and the corresponding 
component of the objective function is fp. Consider a 
path p E Px not containing x, where, as usual, 1 is the 
origin node and 1 is the destination node of p. Suppose 
that x E *T is an interior point on link (a, b), having 
length d(a, b). Assume that the distance from node a to 
x is Qd(a, b), where 0 S Q S 1. Then the deviation 
distance from p to x, defined as D(p, x), is found by 
computing the minimum of four possible detour routes to 
and from x: 

D(p, x) = d(1, x) + d(x, 1) - d(1, 1) 
= min{d(1, a) + 2Qd(a, b) + d(a, 1) 

- d(1, 1); d(1, a) + d(a, b) 

+ d(b, 1) - d(1, 1); d(1, b) 

+ d(a, b) + d(a, 1) 
- d(1, 1); d(1, b) + 2(1 - Q)d(a, b) 

+ d(b, I) - d(1, 1)}. 

Since D(p, x) is the lower envelope of linear functions 
of Q, it is a piecewise linear concave function of Q. 
Since g(y) is a decreasing convex function of y and D(p, 
x) is a piecewise linear concave function of Q, g(D(p, 
x)) is a convex function of Q. Since a sum of convex 
functions is convex, we know that the partial sum 

2 fpg(D(p, x)) 
PEP, 

is convex. Since Q is defined on the closed interval 0 S 

Q < 1, a maximum of the partial sum must exist at an 
endpoint corresponding to Q = 0 or Q = 1. 

Path/facility reassignment: Any change in location of the 
examined facility from an interior point on (a, b) to one 
of the arc's nodes may, in turn, cause a reassignment of 
customers on one or more paths in Px to other facilities 
and/or may cause reassignment of customers on paths 
not in PX to the examined facility. But such path/facility 
reassignment cannot decrease the objective function. 

Cases ii and iii (the two instances requiring nodes to be 
visited in proper sequence, subsection 1.2): Both are 
proved in a similar fashion. 

2.3. P3: Minimize Expected Inconvenience 

In problem P3 all customers must travel to a service 
facility "closest" to their preplanned paths to purchase 
or consume the service provided there. "Closeness" of a 
facility to a path is measured in terms of the minimum 
deviation distance (subsection 1.2). The objective of P3 is 

to locate the service facilities to minimize the total devi- 
ation distance traveled per unit time, or equivalently, to 
minimize the expected deviation distance traveled by a 
random customer, that is: 

Problem P3 

Min E fpD(p, x), 
JEEG peP 

where the deviation distance can be calculated according 
to any of the cases i, ii, and iii. 

As noted by Hodgson (1981), who first posed this 
problem, the objective function of P3 is identical in form 
to that of the well known "m-median" type problem 
(see, for example, Mirchandani and Francis 1990). For 
the m-median problem, Hakimi (1964, 1965) proved that 
an optimal set of facility location exists on the nodes of 
the network. Thus, in P3 the search for optimal locations 
in G in the objective function can be replaced with a 
search limited to the node set N. Any of the algorithms, 
heuristic or exact, developed and used to solve the (NP- 
hard) m-median problem can be used for P3. However, 
as an instance of the m-median, P3 cannot be approxi- 
mated within a constant factor unless P = NP (see 
Nemhauser and Wolsey 1988). Moreover, it is well 
known that the greedy heuristic applied to the rn-median 
problem provides solutions with values arbitrarily bad 
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from the optimal. In the rest of the paper we focus on 
problems P1 and P2- 

2.4. A Simple Numerical Example 

We illustrate the three alternative formulations above 
with a simple 3-node example network, as depicted in 
Figure 2. As usual, the numbers adjacent to the links are 
their respective lengths. Suppose that there are three 
paths having positive customer flow rates: P = {1-2, 
2-3, 3-1}, with the flows given as fl2 = 110, f2-3 = 70, 
and f3_1 = 80. Consider the problem of locating only 
one facility, and let X be the nodal facility location 
(with one exception, for P1 with A > 0 we let X E N'). 

Problem P1. Consider problem P1 with A = 0. The total 
flow through node i is 190, 180, and 150 for i = 1, 2, and 
3, respectively. Hence, node 1 is the optimal location. 

Suppose that for this problem we had set A = 1.5. 
Inspection of the network shows that the optimal loca- 
tion for the facility is half-way between nodes 2 and 3, 
representing a situation in which all customers are 
"covered." 

Problem P3. Now consider problem P3 for deviation dis- 
tance according to cases i and ii (the calculations for case 
iii are similar). In each case, one set of customers, repre- 
senting one of the three flow patterns, must deviate to 
visit the facility. The P3 objective function that we wish 
to minimize is the product of the flow of the customers 
who must deviate and their deviation distance. For in- 
stance, placing the facility at node 1 requires 70 custom- 
ers per unit time to deviate from their 2-3 path (of length 
3) to a 2-1-3 path of length 11.5; the corresponding objec- 
tive function value is 70 (11.5 - 3) = 595. Similar values 
for a facility at nodes 2 and 3 are 80 (3.5) = 280 and 110 
(2.5) = 275, respectively. Hence node 3 is optimal. 

Problem P2. Finally, consider problem P2 for deviation 
distance according to cases i and ii with g(D(p, x)) = 
exp(-bD(p, x)). The values of the objective function 
for facility placement at nodes 1, 2 and 3, respectively, 

6 

are 190 + 70 exp(-8.5b), 180 + 80 exp(-3.5b) and 
150 + 110 exp(-2.5b). For 0 < b < 0.0367, node 3 is 
optimal. For b > 0.58, node 1 is optimal. For 0.0367 < 
b < 0.58, node 2 is optimal. 

3. WORST CASE ANALYSIS OF GREEDY 
ALGORITHMS 

In this section, we analyze a generic greedy algorithm for 
problems P1 and P2. We show that the solutions given by 
the greedy algorithm are always within 37% of the opti- 
mal solution and this bound is tight. In Section 4 we 
develop a specific greedy algorithm for P2, as well as a 
branch-and-bound algorithm, and we give numerical 
results. 

Problems P1 and P2 can be formulated generically as 
follows: Let hi: 2N -- R + (i = 1, 2) be set functions 
defined on subsets of the set N. Then, problem Pi, (i = 

1, 2) can be formulated as follows. 

Problem Pi 

Zi = Max hi (S), 
SCNj ,jSj~m 

where the functions hi(S) are defined in Section 2 and 
N1 = N' = N U GA, N2 = N. 

A generic greedy algorithm for problems P1, P2, pro- 
posed in the literature (see, for example, Wolsey 1983), 
is as follows. 

Greedy Algorithm 

[Input: hi(S), m, NJ] 

[Output: RG, ZG] 

1. (Initialization) 

R ?<- 0, to<- 1. 

2. (Main Loop) 

Fort= 1, ..., m 

It <- argmax hi(Rt-1 U {j}) 

Rt <- Rt" U {t} 

3. (Output) 

RG =Rm 

ZG = h(Rm). 

Given the function h(S), the number of facilities m and 
the set of potential locations Ni, the algorithm outputs a 
set RG of m facilities with value ZG. 

Nemhauser, Wolsey and Fisher (1978), and Nemhauser 
and Wolsey (1978) studied the problem of max)(h(S), 
where h(S) is a submodular and nondecreasing function 
and where S C N, ISI < m. We suppressed the sub- 
script on the node set Ni and hi. A set function is called 
submodular if for all S, T C N, 

h(S fl T) + h(S U T) S h(S) + h(T) 
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and is nondecreasing if for all S, T. S C T. we have 
h(S) < h(T). 

Obtaining the exact solution to the problem of maxi- 
mizing a submodular set function is NP-hard. The greedy 
algorithm, however, provides very good solutions, yield- 
ing results "close" to the optimum. More precisely, 
Nemhauser, Wolsey and Fisher prove the next theorem. 

Theorem 3. (Nemhauser, Wolsey and Fisher) The value 
ZG returned by the greedy algorithm when applied to the 
problem: 

Z.= max h (S)(1 
SCNJSI > m 

for h (S) being submodular and nondecreasing satisfies 

-Z 1> - 1 - 1 --= 0. 63. 

In other words, the greedy algorithm returns a solution 
that is optimal for m = 1 and is within 37% from the 
optimal solution value for any value of m. Moreover, the 
bound is tight, i.e., there are instances in which ZG = 

(Z*)[1 - (1 - 1/m~M. 
Furthermore, Nemhauser and Wolsey (1981) have 

shown that within a large class of algorithms the greedy 
algorithm is the best possible for problem 1. 

We plan to show in the remainder of this section that 
problems PI and P2 are instances of problem 1, i.e., the 
functions hi(s), (i = 1, 2) are submodular and nonde- 
creasing. A function f is called supermodular if -f is 
submodular. 

3.1. Delta Coverage 

With the usual bidirectional network G = (N, A), let 
d(x, i) be the length of the shortest path from node x to 
node i)(x, i E N) and let N(x, A\) = {i E N: d(x, i) < 
l\} be the set of nodal delta coverage points associated 
with node x. Let P be the given set of paths, assuming 
that a pathp E P is specified as a set of nodes in N, i.e., 
p = {1, ... , 1}. A customer whose travel path includes 
at least one node ni in N(x, l\) could travel from that 
node to a service facility located at x and back, incurring 
a detour travel distance not exceeding 2zA; in that way, a 
facility located at x covers any node nj E N(x, l\). 

Let 

N(S, A) = U N(x, A) 
xCS 

be the set of nodal delta coverage points corresponding 
to any subset S of potential facility locations, S C N U 
G. (see Figure 3). A customer whose travel path in- 
cludes at least one node in N(S, l\) could travel from 
that path node to and from a facility, with a detour travel 
distance not exceeding 2zA, if at least one facility is lo- 
cated in S. 

Using Theorem 1, problem P1 is formulated as: 

Max h 1 (S) fP - 
151NUG p., 

P1 

P3 C 

B 
P 2 

2 2 

AFD 

P1 

P2 '3 

p1 = (C, E, F, A) fpI1= 2 

P2 = (A, B, C) fP2 = 2 

P3 =(D, C) fP3 =1 

a=2 

S = (A, F) 
N(A, 1) = (A, F), N(F 1) = (A, F, B, E) 
f1(S) = fPj + fP2= 4 

Figure 3. Example for delta coverage. 

Note that for l\ = 0, N(x, l\) = {x}, N(S, l\) = S and 
the problem reduces to the problem studied in Berman, 
Larson and Fouska. 

Proposition 1. If fp ? 0 for all p E P. then for any l\ A 
0, hI (S) is submodular and nondecreasing. 

Proof 

* If S 5 T, then clearly N(S, l\) C N(T, l\) which 
implies that hj(S) $ hl(T) if fp >, 0, i.e., h1(S) is 
nondecreasing. 

* To show that a set function is submodular it suffices to 
show that for all S C T and k f T, hI(T U {k}) - 
h1(T) < h1(S U {k}) - h1(S). 

For any S and T, S C T. let PT ={p E P: P nN(T, 
l) = 0}, i.e., PT is the set of all paths not covered by 
locating facilities in T. Since S C T, then N(S, l\) C 
N(T, l\) which implies that PT C S. Then, 

hi(TU {k}) - h1(T) = E fp - E fp 
PEP pEP 

pnN(TUjk},L)?0 pnN(T,4)?0 

= 2 ro- >: fo 
PEP PEPT 

pnN(T,A)=0 pnN(k,A)?0 

pfnN(k,A)? 0 

<1 E to 
p EPs 

pnN(k, L) ?0 

= hj(S U {k}) - hl(S), 

i.e., h1(S) is submodular. 

3.2. Maximize Market Size 

In subsection 1.2 path deviation distances were defined for 
two cases: all customer paths are minimum distance paths; 
and not all customer paths are minimum distance 
paths. For the former case, for each p C P and S C N, we 
can write the deviation distance of path p from set S as: 
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D(p, S) = Min[d(i, x) + d(x, j) - d(i, j)}. 
z ,Jee 

Let g(y):R' -- R' be a nondecreasing function, not 
necessarily convex. From Theorem 2, P2 can be formu- 
lated as: 

Max h2(S) = 2 fpg(D(p, S)). 
SCN PEP 
ISIsm P 

In the following proof, we assume that all customer paths 
are minimum distance paths. A directly analogous proof 
applies to the other case. 

Proposition 2. If g(y) is a nonincreasing function, then 
h2(S) is a submodular, nondecreasing set function. 

Proof. If S 5 T, then D(p, S) > D(p, T) which im- 
plies that g(D(p, S)) < g(D(p, T)), because g(y) is 
nonincreasing. Therefore, h2(S) < h2(T), i.e., h2(S) 
is nondecreasing. We will now show that g(D(p, S)) is 
submodular. Let S 5 T and k 0 T. We first note that 

[D(p, T U {k})] 

= min{D(p, T), Min[d(i, k) + d(k, j) - d(i, j)]. 
i,jE-p 

To check whether g(D (p, S)) is submodular it suffices 
to show that 

g(D(p, T U {k})) - g(D(p, T)) 

S g(D(p, S U {k})) - g(D(p, 5)), 

or equivalently, defining 

a - Min[d(i, k) + d(k, j) - d(i, j)], 
in[Dp 

g(Min[D(p, T), a]) - g(D(p, T)) 

<, g(Min[D(p, S), ax]) - g(D(p, S)). (2) 

To check (2) we distinguish three cases: 

1. (a 3 D(p, S) ? D(p, T)) Then (2) becomes 

g(D(p, T))-g(D(p, T)) 

_< g(D (p, S)) -g(D, (p, S)), 

which is obviously satisfied. 
2. (D(p, S) ? a k D(p, T)) Then (2) becomes 

O S g(a) - g(D(p, S)), 

which is satisfied because g(y) is nondecreasing. 
3. (D(p, S) ? d(p, T) 3 a) Then (2) becomes 

g(a) -g(D(p, T)) _< g(a) -g(D(p, S)), 

which is satisfied because g(D(p, S)) S g(D(p, T)). 
(S 5 T and D(p, S) ? D(p, T).) 

Therefore, the set function g(D(p, S)) is submodular. 
Then, if fp > 0, h2(S) is also submodular because it is a 
sum of submodular set functions. 

Note that the submodularity of h2(S) is independent of 
any convexity assumption on g(x). 

Figure 4. Example in the proof for m = 4. 

3;3. Main Theorem 

As a result of Propositions 1 and 2, Theorem 3 holds for 
P1 and P2, i.e., the generic greedy algorithm produces a 
value ZG. (i = 1, 2) such that 

ZG. 

Z 'B1-(1m) . ~~~~~~~~~(3) 

We note that the tightness of the bound is proved in 
Nemhauser and Wolsey (1981) for arbitrary submodular 
functions. Still remaining is the question whether a better 
bound can be found for our problem. Therefore, in 
the following theorem we investigate the tightness of the 
bound. 

Theorem 4. For problem P1 with A = 0, the bound (3) is 
tight. 

Proof. Consider a network with nodesAo,A1, , Am, B1, 
B2, ..., Bm-2, C1, ..., Cm. The set of edges is as follows: 
E = {lo, Ai), 0g, C); i = 1, ..., m} U {f(A, B); i = 1, ..., 
m,]j = 1, ..., m - 2}. (See Figure 4 form = 4.) The setP 
of paths is as follows: For i = 1, .. . m 

m paths (AO, Ai) each with yaluefo = mm,2 

m paths (Ai, B1) each with valuedf = m m1 m-2 
m 

m paths (Ai, Bj) each with valued = (m1)'mm2, 

j= 1 ... m -2 
m paths (A i, C1) each with value fm (m - 1) m 

The optimal solution of P1 with A = 0 and up to m 
facilities is the set (A 1, . . ., Am) of the nodes at the first 
level that covers all the paths. The value of the optimal 
solution is 
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m-2 

Z* = Mfo + m > fj + mfmi =mm. 
j=1 

The greedy algorithm selects node A0 first, then node B 1, 
then node B2,..., node Bm-2 and, finally, one of 
Al, .*,Am. 

The cost of the greedy algorithm is 

m-2 

ZG = mfo + m E fj +fmij = mm - (m _ 1)m. 
j=1 

The reason is that the value of AO is at least as large as 
any other's node, B1 is at least as high as any from the 
remaining nodes, etc. Thus, ZG/Z* = 1 - (1 - 1/M)m. 

4. SOLVING PROBLEM P2 

Since P1 can be solved using the algorithms of BLF and 
P3 is essentially an mr-median problem, in this section we 
focus on solution methods for P2. Building on our stan- 
dard notation, let D(p, i) be the deviation distance for a 
path p customer to detour through node i. This notation 
applies whether or not strictly minimum distance paths 
are used. Define the potential expected path p flow 
through node i as 

CPi = fpg(Dfp, i)) -=fpg(min D( j, i)), 

where 

D(j, i) = d(j, x) + d(x, I) - d(j, l) for case i 

d(j, x) + d(x, j + 1) - d(j, j + 1) for case ii 

2d(j, x) for case iii. 

Since g(.) is a convex decreasing function, 

E, fpg(D(x, p)) = r max Cpj. 
PEP PEP 1 

Therefore P2 can be formulated as: 

max E max CP. 
XEN P iie 

We can now identify binary decision variables and as- 
signment variables. Let 

Xp = 11 if a facility i is assigned to path p 
= -0 otherwise 

and 

Xi_ 11 if a facility is located at node j 
0 otherwise. 

Now P2 can be stated as a mathematical programming 
problem: 

n 

max - - Cp -pi 
pEP = 

n 

subject to = m 
j=1 

Xj - Xpj 0 j = 1, 2, . ,n 
n 

> Xpi 1 for all p E P. 
j=l 

The first constraint guarantees that m facilities are lo- 
cated. In the second set of constraints we have made 
sure that path p cannot be assigned to a node that does 
not house a facility, whereas the last set of constraints 
ensures that each path is assigned to exactly one facility. 

To solve P2, we developed a greedy heuristic (having 
the properties of the generic greedy heuristic of Section 
3) and an exact algorithm. The greedy heuristic is a mod- 
ification of the greedy heuristic to solve BLF. 

The Greedy Heuristic to Solve P2 

STEP 1. 1 = 1. 

STEP 2. Compute bi = Xprp fg(d(i, p)), i = 

1^ ..., n. 

STEP 3. Find biax = maxiEN{bi}; locate facility 1 at 
node imax and delete imax from N. 

STEP 4. For all p E P, for all j E N, set 

g(D(i, p)) = [g(D(i, p)) - g(D(imax, p))] . 

Delete from P the set Pimax (which is the set of all paths p 
for which g(D(imax p)) = 0.) 

STEP 5. If 1 = m or if P = 0, STOP. Otherwise set 
1 = 1 + 1 and go to Step 2. 

As an example, let us refer again to the network in 
Figure 1 and let us solve problem P2 with an exponential 
customer damping factor, i.e., g(D(p, x)) = e-bD(px). 

The paths and all extra distances are given in Table I. 
Suppose that b = 0.05 and fp = 1 for allp E P. We 
start the heuristic with 1 = 1. 

Since b, = 9.413, b2 = 8.781, b3 = 8.993, b4 = 9.065, 
b5 = 8.171, b6 = 9.4999, b7 = 8.722, bi = b6, we 
locate facility 1 at node 6 and we delete node 6 from N. 
We find new e-bD(P'j) for all p, j ? 6 and delete from P 
paths 4, 5, 6, 7, 8, and 9. Since 1 = 1, P = 0, we let 

Table I 
Paths and Extra Distances for the Example 

Nodes / Path 1 2 3 4 5 6 7 
1 2,145 0 0 2 0 0 1 2 
2 237 4 0 0 7 10 4 0 
3 145 0 6 7 0 0 1 6 
4 167 0 2 1 3 6 0 0 
5 361 0 1 0 3 11 0 5 
6 1 2 0 0 0 0 0 
7 463 1 2 0 0 6 0 5 
8 546 1 2 6 0 0 0 5 
9 612 0 0 1 3 1 1 0 6 

10 75 6 8 6 5 0 5 0 



BERMAN, BERTSIMAS AND LARSON / 631 

1 = 2. Now b1 = 0.0975, b2 = 0.2300, b3 = 0.1812, 
b4 = 0.0975, b5 = 0.3187, b7 = 0.4024, bi max = b7 
and we locate the second facility at node 7, and we delete 
node 7 from N. We find new e -bD(pj) and delete from P 
paths 2 and 10. Since I = 2, P = 0 we set 1 = 3, and 
find that b1 = 0.0975, b2 = 0.0487, b3 = 0, 
b4 - 0.0975, b5 = 0.0975, imax = 1 (or 4 or 5). Since 
I = 3, we are done. The total flow intercepted is 9.4999 
+ 0.4024 + 0.0975 = 9.9998. 

To solve the problem P2 exactly we developed a 
branch-and-bound code for the problem. This branch- 
and-bound procedure is based on two upper bounds. The 
first one, which is a minor modification of the one devel- 
oped in (1) for P1, is called UB1. The variables X1, ... 

X,, are the decision variables for the branch-and-bound 
tree. Let us define D C N as a set of all variables that 
constitute a partial solution in the branch-and-bound tree 
(i.e., j E D Xj = 0, 1) and let U = N - D. Let 
D1 C D, ID11 = 1, be the set of all nodes in D that house 
a facility (j E D1 =E' Xj = 1) and let Do = D - D1(j E 
Do = Xj = 0). Let 

ri = max Cij, i= 1,..., P, 
]EDi 

i.e., ri is the maximum amount of flow that the facilities 
in the partial solution intercept from path i. For each j E 
U we define 

PIl 

j= E max{0, Cij - rj}, 
i-1 

i.e., 6j is maximum amount of flow node j can intercept 
after deleting all the flow intercepted by the already- 
located facilities. Now UB1 can be defined as 

IPl 
UB1 = ri +L 

i=l 

where L is the sum of the (m - 1) greatest 5j's. The 
second upper bound called UB2 can be now defined as 

UB2= 2 max Cpj. 
pEp jED1i UU 

We note that UB2 is useful when there are many variables 
in a partial solution for which Xj = 0, which is exactly the 
situation when UB1 is not useful. Therefore, UB1 and UB2 
complement each other in the branch and bound. Finally, 
the upper bound is the minimum of UB1 and UB2. 

The computer code implementing the branch-and- 
bound algorithm for problem P2 is written in C and tests 
were run on a DEC 5810. To provide test results we 
randomly generated network sizes, their paths and corre- 
sponding flows. Table II illustrates a typical sample of 
our test cases for the problem with an exponential damp- 
ing factor. The table provides the CPU time and the ratio 
of the solution value provided by the greedy heuristic 
and the branch and bound for networks with a number of 
nodes and a number of paths ranging from 20-100 and a 
number of facilities ranging from 2-5. We see that for this 

Table II 
CPU Times in Seconds (Rounded to Closest Integer) 

and the Ratio of Objective Function of the 
Greedy Heuristic to the Objective Function of the 
Branch-and-Bound Procedure for Several n, JPJ 

and m Values 

CPU of the Value of Greedy 
Branch-and-Bound Value of Branch 

n 1PI m Algorithm and Bound 
10 10 2 0 1 

3 0 1 
4 0 1 
5 0 1 

30 30 2 0 0.998 
3 1 0.937 
4 5 0.951 
5 22 0.993 

50 50 2 1 0.983 
3 11 0.935 
4 69 0.968 
5 355 0.955 

100 100 2 5 1 
3 169 0.936 
4 693 0.934 
5 2,147 0.943 

set of runs the greedy heuristic performs considerably 
better than its worst case bound. 

5. CONCLUSIONS AND FUTURE RESEARCH 

In this paper, the BLF model is generalized to consider 
the possibility for customers of discretionary services to 
deviate from preplanned tours to visit a discretionary 
service facility. Three models are considered: the delta 
coverage problem P1, where a customer will deviate from 
the preplanned tour if the facility is at a distance of at 
most A from the tour; the maximize market size problem 
P2, where the number of customers that travel to the facil- 
ity is a decreasing function of the deviation distance; and 
the minimize expected inconvenience problem, where the 
total deviation distance traveled is minimized. 

The main results of the paper are: 

1. Node optimality property holds for P2 and P3. For 
problem P1 an optimal set of locations exists in a set 
N' which is the union of N and the set GA (set points 
that are at a distance of A from the nodes.) 

2. Problem P1 can be solved using the algorithms devel- 
oped for the BLF (applied to the set of candidate loca- 
tions N'). 

3. Problems P1 and P2 belong to a family of problems for 
which the greedy heuristic gives a solution that is 
guaranteed to be within 37% of the optimal solution 
and this bound is tight. 

4. Problem P2 can be formulated as an integer program 
problem and a branch-and-bound algorithm to solve it 
is given. 
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We offer two directions for future research: Study 
problems P1 and P2 when the facilities are allowed to 
compete with each other. Study the polyhedral structure 
of problem P2 to improve the branch-and-bound algo- 
rithm developed in this paper. 
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